Problem:
f(f(a())) -> c(n__f(g(f(a()))))
f(X) -> n__f(X)
activate(n__f(X)) -> f(X)
activate(X) -> X
Proof:
Bounds Processor:
bound: 2
enrichment: match
automaton:
final states: {6,5}
transitions:
f1(35) -> 36*
f1(25) -> 26*
f1(27) -> 28*
f1(33) -> 34*
n__f1(17) -> 18*
n__f1(19) -> 20*
n__f1(9) -> 10*
n__f1(11) -> 12*
n__f2(49) -> 50*
n__f2(51) -> 52*
n__f2(41) -> 42*
n__f2(43) -> 44*
f0(2) -> 5*
f0(4) -> 5*
f0(1) -> 5*
f0(3) -> 5*
a0() -> 1*
c0(2) -> 2*
c0(4) -> 2*
c0(1) -> 2*
c0(3) -> 2*
n__f0(2) -> 3*
n__f0(4) -> 3*
n__f0(1) -> 3*
n__f0(3) -> 3*
g0(2) -> 4*
g0(4) -> 4*
g0(1) -> 4*
g0(3) -> 4*
activate0(2) -> 6*
activate0(4) -> 6*
activate0(1) -> 6*
activate0(3) -> 6*
1 -> 6,33,11
2 -> 6,25,19
3 -> 6,35,9
4 -> 6,27,17
10 -> 5*
12 -> 5*
18 -> 5*
20 -> 5*
25 -> 41*
26 -> 6*
27 -> 49*
28 -> 6*
33 -> 43*
34 -> 6*
35 -> 51*
36 -> 6*
42 -> 26*
44 -> 34*
50 -> 28,6
52 -> 36,6
problem:
Qed